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Abstract

Background

Preterm birth is a major risk factor for neurodevelopmental delays and disorders. This study

aimed to identify genomic biomarkers of intrauterine inflammation in umbilical cord tissue in

preterm neonates that predict cognitive impairment at 10 years of age.

Study design

Genome-wide messenger RNA (mRNA) levels from umbilical cord tissue were obtained

from 43 neonates born before 28 weeks of gestation. Genes that were differentially

expressed across four indicators of intrauterine inflammation were identified and their func-

tions examined. Exact logistic regression was used to test whether expression levels in

umbilical cord tissue predicted neurocognitive function at 10 years of age.

Results

Placental indicators of inflammation were associated with changes in the mRNA expression

of 445 genes in umbilical cord tissue. Transcripts with decreased expression showed signifi-

cant enrichment for biological signaling processes related to neuronal development and

growth. The altered expression of six genes was found to predict neurocognitive impairment

when children were 10 years old These genes include two that encode for proteins involved

in neuronal development.

Conclusion

Prenatal intrauterine inflammation is associated with altered gene expression in umbilical

cord tissue. A set of six of the differentially expressed genes predict cognitive impairment
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later in life, suggesting that the fetal environment is associated with significant adverse

effects on neurodevelopment that persist into later childhood.

Introduction

Preterm birth, defined as delivery at< 37 completed weeks gestation, is currently the leading

cause of neonatal morbidity and mortality in the United States [1]. Individuals born prema-

turely are at increased risk for other adverse health outcomes, and those born at less than 28

weeks gestation are at particularly high risk [2]. Perhaps most important are adverse neurode-

velopmental outcomes, which affect an estimated 1 million preterm infants born each year [3].

Preterm birth is thought to be caused by the pathological induction of certain components

of the normal parturition process resulting from a combination of environmental, genetic, and

behavioral factors [4,5]. Many identified risk factors have the potential to promote inflamma-

tory processes [6]. Indicators of intrauterine inflammation are present in as many as 40–70%

of preterm births, versus only 1–13% of full term births [7]. These data support the hypothesis

that risk of preterm birth is increased by pathological, environmental, and/or genetic factors

that contribute to delivery-inducing inflammation [4,8]. Among preterm infants, biomarkers

of prenatal inflammation, including inflammatory cytokines in amniotic fluid [9], placental

histologic findings [10–12], and inflammation-related proteins in neonatal blood [13–17], are

associated with a range of neurodevelopmental impairments [18].

A fetal inflammatory response (FIR) is associated with increased expression of a broad

array of genes related to neurodevelopment [19]. In the present study, we aimed to identify

whether genomic signaling changes in umbilical cord tissue were associated with a suite of

four histologic markers of prenatal inflammation in a subset of infants from the Extremely

Low Gestational Age Newborns (ELGAN) cohort. We hypothesized that some of these geno-

mic changes would be predictive of neurocognitive function at 10 years of age and could pro-

vide novel predictive biomarkers of neurocognitive impairment in preterm infants.

Materials and methods

The ELGAN cohort

The ELGAN cohort was established to identify risk factors for neurodevelopmental impair-

ments in extremely low gestational age newborns. Between 2002–2004, 1506 infants were

enrolled in the study, and in 1410 cases (94% of the cohort) placentas were collected for patho-

logical examination. Placentas were collected at delivery and flash frozen to -70 C. Placentas

were examined both grossly and histologically for many parameters, including a subset of

intrauterine inflammation markers. The larger ELGAN cohort is described in detail elsewhere

[20,21].

RNA isolation and gene expression assessment

The data in this study were generated by Cohen et al. from isolated total RNA from the umbili-

cal cord tissue homogenates collected from infants born between 23 and 28 weeks gestation at

Brigham and Women’s Hospital, Beth Israel Deaconess Medical Center, or Wake-Forest Med-

ical Center between April 1, 2004 and August 31, 2004. RNA was extracted using the Qiagen

RNeasy Mini Kit, as described elsewhere [22]. Thirteen samples had insufficient total RNA

(< 7 μg) for hybridization and five infants died before 36 weeks postmenstrual age. These 18
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infants were excluded from further analysis. Total RNA from the 54 remaining ELGAN sub-

jects were hybridized to the Affymetrix Human Genome U133 Plus 2.0 Array, which assesses

gene expression levels across 54,675 probes. All expression data are available at the National

Center for Biotechnology Information’s Gene Expression Omnibus repository (GSE8586)

[22]. The data were further processed previously, applying quality control assessments to all 54

samples [19]. Six samples that failed these measures were excluded from further analysis [19].

Data were normalized into Affymetrix probesets using fRMA [19]. An additional five subjects

were excluded from analysis due to missing clinical information about intrauterine inflamma-

tion markers from the umbilical cord tissue. Probes without annotations to Entrez gene identi-

fiers were removed and only the probeset with the largest inter quartile range per Entrez gene

was kept. The final data set consisted of measures of gene expression across 20,155 genes for

n = 43 subjects [19] (S1 Table).

Cognitive assessment at 10 years of age

When study participants were 10 years of age, general cognitive ability (or IQ) was assessed

with the School-Age Differential Ability Scales–II (DAS-II) Verbal and Nonverbal Reasoning

scales [23]. Attention and executive function were assessed with the DAS-II and the NEPSY-II

[24]. DAS-II Recall of Digits Backward and Recall of Sequential Order measured verbal work-

ing memory. NEPSY-II Auditory Attention and Auditory Response Set evaluated auditory

attention, set switching and inhibition. NEPSY-II Inhibition and Inhibition Switching assessed

simple inhibition and inhibition in the context of set shifting, respectively. NEPSY-II Animal

Sorting measured concept generation and mental flexibility. As a comprehensive measure of

cognitive and executive function, we used latent profile analysis (LPA) to identify study partic-

ipants with similar distinctive profiles on measures of cognitive and executive functioning.

With this approach, four subgroups were identified, corresponding to functioning that was

normal (LPA score = 1; 34% of ELGAN cohort), low-normal (LPA score = 2; 41%), moderately

impaired (LPA score = 3; 17%), and severely impaired (LPA score = 4; 8%) [25,26].

Relating gene expression to prenatal inflammation measures

Four markers of intrauterine inflammation were selected to test for associations with gene

expression: inflammation of the chorionic plate, moderate or severe chorioamnionitis, neutro-

philic infiltration of the fetal vessels in the chorionic plate, umbilical cord inflammation [27].

Using ANCOVA analysis, these binary measures were assessed separately. Potential confound-

ers were included in the ANCOVA analysis for each placental histologic marker only if they

displayed different means (2-sided student t-test p-value < 0.20) between subjects with that

placental inflammation marker and without that placental marker. Variables tested but that

displayed no mean difference in any of the four histologic markers of placenta inflammation

included maternal age, maternal race, maternal BMI, maternal education level and infant sex.

Exposure to smoke (active or passive) during pregnancy was included in the analysis for chor-

ioamnionitis and neutrophilic infiltration of the fetal vessels, and gestational age was also

included in the analysis for neutrophilic infiltration of the fetal vessels. In order to control for

multiple tests, false discovery rate (FDR) q-values were calculated. Significance was defined as

FDR q-value < 0.05 and an absolute fold change� |2.0|.

Network analysis of genes associated with prenatal inflammation

measures

In order to examine the higher-level biological functions and processes related to genes

changed in association with four markers of prenatal intrauterine inflammation, functional
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relationships were assessed among these genes using Ingenuity Network Analysis (IPA) (Inge-

nuity Systems1, Redwood City, CA, USA) and STRING v10.0 [28,29]. Network analyses were

stratified by directionality of gene expression associations. Canonical pathways from IPA and

PFAM protein domains enriched among these gene sets were analyzed and reported.

Logistic regression of genomic markers of inflammation to later life

neurological score

We tested whether the expression levels of genes associated with one or more intrauterine

inflammation marker predicted later life neurocognitive function using exact logistic regres-

sion analysis. Exact logistic regression was used due to the small subset of subjects for whom

LPA score measured (n = 22). The dependent variable was the child’s LPA score at age 10, with

expression levels predicting the binary outcome of (i) no or low impairment (LPA score = 1 or

2, n = 17) or (ii) moderate or severe impairment (LPA score = 3 or 4, n = 5). As potential con-

founders had been controlled for in the first step of this analysis, the model was run with gene

expression as the sole predictor variable. Significance was defined as an exact p-value < 0.05,

and exact beta estimates, exact parameter-likelihood odds ratios and 95% confidence intervals

for odds ratios are reported.

Results

Characteristics of the study cohort

Maternal and infant demographic and birth clinical data are presented in Table 1 for the subset

of the ELGAN subjects with gene expression data used in this study (n = 43). In these infants,

the majority of mothers were white and reported no smoking during pregnancy. The mean

week of delivery was 26.1, and approximately two-thirds of the infants were male (Table 1).

The demographic characteristics in this subset of ELGAN infants were similar to those

reported for all ELGAN subjects [21], with the exception of a higher proportion of males in

this cohort. We calculated the prevalence of four histological markers of prenatal intrauterine

inflammation: inflammation of the chorionic plate, neutrophilic infiltration of the fetal vessels

in the chorionic plate, and umbilical cord inflammation were all present in approximately 25%

of the study subjects, while moderate or severe chorioamnionitis was present in approximately

50% of the study subjects (Table 1). The occurrence of these four histologic markers of inflam-

mation were consistent with those reported in larger study (n = 947) of the ELGAN cohort

[20].

Markers of prenatal inflammation are associated with umbilical cord

gene expression

A comparison of mRNA expression between subjects with or without each of the four markers

of intrauterine inflammation identified 445 unique genes (S1 Table). Among these 445 genes,

334 (75.1%) were increased in expression in association with at least one histological marker of

intrauterine inflammation, and 111 (24.9%) were decreased in expression in association with

at least one histological marker of intrauterine inflammation (Fig 1). All genes demonstrated

remarkable consistency in the directionality of expression when associated with more than

one marker of intrauterine inflammation (Fig 1). Inflammation of the chorionic plate was

associated with the expression levels of 255 genes; moderate or severe chorioamnionitis was

associated with the expression levels of 396 genes; neutrophilic infiltration of the fetal vessels

in the chorionic plate was associated with the expression levels of 365 genes; and umbilical

cord inflammation was associated with the expression levels of 323 genes. In addition, 221
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Table 1. Maternal and child characteristics. Data are number of study participants (percent) except where indicated.

Characteristic N = 1410 ELGAN Subjects N = 43 ELGAN Subjects N = 22 ELGAN Subjects

Maternal Age at Delivery in years (median; range in parenthesis) 28.6

(13.2–47.3)

32.1

(15.8–43.2)

34

(19.4–43.2)

Maternal Race

White 819 (58.1%) 26 (60.5%) 18 (81.8%)

African-American 397 (28.2%) 9 (20.9%) 4 (18.2%)

Other 178 (12.6%) 7 (16.3%) 0 (0%)

Unknown 16 (1.1%) 1 (2.3%) 0 (0%)

Pre-pregnancy BMI (kg/m2) (median; range in parenthesis) 23.9

(13.2–72.1)

23.1

(18.1–46.5)

22.5

(19.1–46.5)

Public Health Insurance

No 785 (55.7%) 31 (72.1%) 19 (86.3%)

Yes 558 (39.6%) 12 (27.9%) 3 (13.6%)

Unknown 67 (4.8%)

Education

< = 12 years 224 (15.9) 10 (23.3%) 3 (13.6%)

12–15 years 681 (48.3%) 12 (27.9%) 7 (31.8%)

16+ years 404 (28.7%) 20 (46.5%) 11 (50.0%)

Unknown 101 (7.2%) 1 (2.3%) 1 (4.5%)

Infertility Treatment

No 1063 (75.4%) 31 (72.1%) 14 (63.6%)

Yes 264 (18.7%) 12 (27.9%) 8 (36.4%)

Unknown 83 (5.9%)

Smoking during Pregnancy

No 1133 (80.4%) 40 (93.0%) 20 (90.9%)

Yes 199 (14.1%) 3 (7.0%) 2 (9.1%)

Unknown 78 (5.5%)

Infant Sex

Male 752 (46.7%) 27 (62.8%) 14 (63.6%)

Female 658 (46.7%) 16 (37.2%) 6 (27.3%)

Birth and Later Life Outcomes

Gestational Age (weeks)

Median (range) 28.6

(13.2–47.3)

27

(23–27)

27

(23–27)

23–24 weeks 387 (27.5%) 6 (14.0%) 2 (9.1%)

25–26 weeks 618 (43.8%) 14 (32.6%) 8 (36.4%)

27 weeks 405 (28.7%) 23 (53.5%) 12 (54.5%)

Birth weight (g) (median; range in parenthesis) 790

(280–1528)

929.7, 952

(550–1360)

889.5

(550–1360)

Inflammation of the chorionic plate (Stage: 3 and Severity: 3)

No 1118 (79.3%) 32 (74.4%) 16 (72.7%)

Yes 265 (18.8) 11 (25.6%) 6 (27.3%)

Unknown 27 (1.9%)

Moderate/Severe Chorioamnionitis

No 879 (62.3%) 23 (53.5%) 13 (59.1%)

Yes 505 (35.8%) 20 (46.5%) 9 (40.9%)

Unknown 26 (1.8%)

Neutrophilic infiltration of fetal vessels in the chorionic plate

No 1034 (73.3%) 29 (67.4%) 15 (68.2%)

(Continued )
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genes were associated with the same directionality across all four intrauterine inflammation

markers. Specifically, 168 of these 221 genes (76.0%) were increased in expression in associa-

tion with the four intrauterine inflammation markers, 53 of these 221 (24.0%) genes were

decreased in expression (S1 Table).

Umbilical cord tissue gene expression profiles are enriched for

inflammation and neuronal development processes

Systems level analysis was used to characterize the canonical pathways and protein domains

enriched within the 334 genes with increased expression in association with one or more histo-

logical marker of intrauterine inflammation and the 111 genes with decreased expression in

association with one or more histological marker of intrauterine inflammation. Notably, dif-

ferences in functional signaling between the genes with increased and decreased expression

were observed (Table 2). Specifically, the most significant canonical pathway enriched among

the genes with increased expression was granulocyte adhesion and diapedesis, and the other

top pathways were also associated with inflammation signaling (Table 2). In contrast, the most

significant canonical pathways among the genes with decreased expression included gap junc-

tion signaling and dopamine-DARPP32 feedback in cAMP signaling, both of which are

known to play important roles in early neuronal development (Table 2) [30–32]. Similarly, the

protein domains that were significantly enriched among the genes with increased expression

in association with one or more histological marker of intrauterine inflammation were small

cytokines, metallothionein, and S-100/ ICaBP type calcium binding domain. Proteins contain-

ing all of these domains have been demonstrated to play a role in placental inflammation [33–

35]. Interestingly, elevated levels of interleukin-8 (IL-8) in cord blood have been previously

associated with a higher incidence with brain injury in preterm infants with placental inflam-

mation [35]. Among genes with decreased expression, immunoglobulin I-set protein domains,

which are known to function in nervous system development, were found to be significantly

enriched [36]. Specifically, among the genes associated with a marker of intrauterine

Table 1. (Continued)

Characteristic N = 1410 ELGAN Subjects N = 43 ELGAN Subjects N = 22 ELGAN Subjects

Yes 340 (24.1%) 14 (32.6%) 7 (31.8%)

Unknown 36 (2.6%)

Umbilical cord inflammation (grade 3–5)

No 1136 (80.1%) 31 (72.1%) 16 (72.7%)

Yes 216 (15.3%) 12 (27.9%) 6 (27.3%)

Unknown 58 (4.1%)

LPA Score

1 282 (20.0%) 13 (30.2%) 13 (59.1%)

2 337 (23.9%) 4 (9.3%) 4 (18.2%)

3 134 (9.5%) 4 (9.3%) 4 (18.2%)

4 66 (4.7) 1 (2.3%) 1 (4.5%)

Unknown 591 (41.9%) 21 (48.8%) 0 (0%)

Maternal demographic data, pregnancy characteristics, and data on birth and later in life outcomes are presented for the entire ELGAN sample for which

placentas were collected (N = 1410), as well as the N = 43 and N = 22 ELGAN subjects used in this analysis. Data are presented as the number (%) of

subjects in the cohort unless otherwise noted. For each of the four histological markers of intrauterine inflammation, there was no significant difference in

maternal age, maternal race, maternal BMI, maternal education level and infant sex between subjects with and without each marker (Student’s 2-sided t-

test p-value > 0.20).

https://doi.org/10.1371/journal.pone.0176953.t001
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inflammation that encode for a protein with an immunoglobulin I-set protein domain and

that have been previously indicated in neurodevelopment were contactin 1 (CNTN1), neuronal

growth regulator 1 (NEGR1), neurotrophic receptor tyrosine kinase 3 (NTRK3), and receptor

tyrosine kinase like orphan receptor 1 (ROR1) [37–40].

Genomic changes in umbilical cord tissue are related to neurocognitive

function

In exact logistic regression models testing all 445 genes, expression levels of 6 genes altered in

association with one or more histological marker of prenatal intrauterine inflammation also

predicted neurocognitive impairment later in life (Fig 2, S2 Table). Increased expression levels

of chromosome 10 open reading frame 54 (C10orf54, p = 3.64e-2) and glutathione peroxidase

3 (GPX3, p = 4.53e-2) predicted greater neurocognitive impairment later in life and were also

increased in association with at least one marker of prenatal intrauterine inflammation (Fig 2).

Decreased expression levels of cysteine rich secretory protein LCCL domain containing 1

(CRISPLD1, p = 4.06e-2), extracellular matrix protein 2 (ECM2, p = 2.86e-2), olfactomedin like

1 (OLFML1, p-value = 3.36e-2), and paraneoplastic Ma antigen family like 1 (PNMAL1, p-

Fig 1. Heatmap of 445 genes that displayed significant differential expression values across one or more markers of intrauterine

inflammation in n = 43 subjects. The absolute fold change (cases/controls) is displayed for each gene significantly associated with each

marker of intrauterine inflammation. Red indicates increased expression in association with a marker of intrauterine inflammation and blue

indicates decreased expression in association with a marker of intrauterine inflammation. Rows (genes) were organized by unsupervised

hierarchical clustering Euclidean dissimilarity with average linkage. Significance was defined as FDR q-value < 0.05 and fold change� |2.0|.

https://doi.org/10.1371/journal.pone.0176953.g001
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value = 4.89e-2) predicted more severe neurocognitive impairment and were also decreased in

association with at least one marker of prenatal intrauterine inflammation (Fig 2). CRISPLD1
and ECM2 have been suggested to play roles in neuronal development [41,42].

Discussion

In this study, we have demonstrated evidence of genomic signaling changes in the umbilical

cord tissue of extremely preterm infants that are associated with multiple markers of intrauter-

ine inflammation. Two interesting patterns of gene expression were observed; inflammation-

associated genes displayed increased expression in the cord, while among the genes that dis-

played decreased expression, several were related to neurodevelopment. Expression levels of six

genes altered in umbilical cord tissue in association with one or more intrauterine inflamma-

tion marker significantly predict the risk of neurocognitive impairment later in life. In support

of our data, several of these genes whose decreased expression predicted more severe cognitive

impairment have been previously implicated in neuronal development. Our results indicate

that genomic changes observable at parturition in the umbilical cord tissue of extremely low

gestational age newborns are associated with neurocognitive function later in life.

Preterm newborns are at increased risk for numerous adverse health effects, many of which

are related to prenatal intrauterine inflammation, including neurodevelopmental impairment

Table 2. Top canonical pathways and protein domains enriched among the 445 genes associated with intrauterine inflammation markers.

IPA Canonical

Pathways

p-

value

Associated Genes PFAM Protein Domains p-

value

Associated Genes

Genes with

Increased

Expression

Levels

Granulocyte Adhesion

and Diapedesis

1.58e-

23

IL1RL1, ITGAM, MMP9, SELL, CSF3R,

CCL20, IL1R2, ITGB2, SELE, FPR1,

VCAM1, CXCL6, CXCR4, IL1RN, IL1R1,

C5AR1, CXCL1, CXCL5, CCL5, IL1B,

TNFRSF1B, CXCL2, PPBP, CXCL8,

TNFRSF11B, CCL2, SELPLG, MMP10,

CXCL3, CSF3, ICAM1

Small cytokines

(intecrine/ chemokine),

interleukin-8 like

1.13e-

4

CCL2, CCL20,

CCL5, CXCL1,

CXCL2, CXCL5, IL8

Hepatic Fibrosis /

Hepatic Stellate Cell

Activation

1.58e-

16

IL1RL1, MMP9, IL1R2, IL6, VCAM1,

IL10RA, IFNGR1, IL1R1, FLT1, IGFBP3,

CCL5, IL1B, VEGFA, PDGFRA, CD14,

TNFRSF1B, CXCL8, NFKB2,

TNFRSF11B, COL11A1, CCL2, CXCL3,

TIMP1, SERPINE1, ICAM1

Metallothionein 4.27e-

2

MT1H, MT1X,

MT2A

Atherosclerosis

Signaling

7.94e-

16

CCR2, S100A8, IL1B, MMP9, ITGB2,

SELE, IL6, VCAM1, CXCL8, ALOX5,

NFKB2, LYZ, CXCR4, IL1RN, CCL2,

SELPLG, SERPINA1, F3, PLBD1,

ICAM1, PLA2G2A

S-100/ ICaBP type

calcium binding domain

4.27e-

2

S100A4, S100A8,

S100A9, S100P

Genes with

Decreased

Expression

Levels

Gap Junction

Signaling

2.04e-

5

CAV1, GUCY1A2, GUCY1A3, GAB1,

PLCE1, PRKAG2, PLCL1

Immunoglobulin I-set

domain

1.83e-

3

CNTN1, NEGR1,

NTRK3, OPCML,

ROR1Cellular Effects of

Sildenafil (Viagra)

4.57e-

5

MYH3, GUCY1A2, PLCE1, GUCY1A3,

PRKAG2, PLCL1

Dopamine-DARPP32

Feedback in cAMP

Signaling

1.55e-

4

GUCY1A2, GUCY1A3, PPM1L, PLCE1,

PRKAG2, PLCL1

The top three most significant pathways (right-tailed Fisher’s Exact test p-value < 0.0001) and significant protein domains (FDR p-value < 0.05) are listed.

Network analyses were stratified by gene expression directionality. Genes that displayed increased expression levels in association with one or histological

markers of intrauterine inflammation were enriched for canonical pathways and protein domains involved in inflammatory and immune processes. Genes

that displayed decreased expression levels in association with one or histological markers of intrauterine inflammation were enriched for canonical

pathways and protein domains involved early neuronal development.

https://doi.org/10.1371/journal.pone.0176953.t002
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[43,44]. In our study, we identified that genes that play a role in fetal neurodevelopment had

decreased expression levels in the cord of infants exposed to the prenatal inflammatory envi-

ronment. Broadly, these genes are associated with gap junction signaling and dopamine-

DARPP32 feedback in cAMP signaling, both of which are associated with neurodevelopment.

Gap junctions signal for crucial processes in the neonatal cerebral cortex, including neuronal

proliferation, migration, and differentiation, while dopamine signaling is known to influence

neuronal migration and dendritic growth [30,31]. Through the secondary analysis of genomic

prediction of cognitive function, a total of six genes were identified. Two of these genes that

displayed decreased expression in relation to inflammation, namely ECM2 and CRISPLD1,

have been previously indicated in neurodevelopment processes. ECM2 encodes an extracellu-

lar matrix protein of the small leucine rich glycoprotein family, which are involved in the regu-

lation of many phases of embryonic neurodevelopment [42]. CRISPLD1 has also been

reported to play a role in extracellular matrix regulation, which is known to play crucial roles

in axon growth and guidance [45]. Changes in the expression levels of genes known to play a

role in neuronal development in association with markers of prenatal inflammation contribute

to the growing body of literature that supports an association between intrauterine inflamma-

tion and cognitive impairment in later childhood [18,35].

A previous study of this ELGAN study subset extensively described the robust genomic

response that is measurable in umbilical cord tissue in relation to FIR [19]. In that study, FIR

Fig 2. Expression levels of six genes predict neurocognitive outcome at 10 years of age. Increased levels (red) of two genes that were

associated with a maker of intrauterine inflammation predicted more severe neurocognitive at 10 years of age. Decreased levels (blue) of 4

genes that were associated with a maker of intrauterine inflammation predicted more severe neurocognitive at 10 years of age. Significance

was defined as an exact p-value < 0.05 in a logistic regression model.

https://doi.org/10.1371/journal.pone.0176953.g002
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was defined as the presence of neutrophils in both the umbilical cord and chorionic plate, and

the authors reported associations between FIR and gene expression levels of many genes,

including 434 of the 445 (97.5%) genes reported here [19]. In support of our findings, this pre-

vious analysis similarly found that genes with decreased expression in association with FIR

were enriched for roles in neurodevelopment [19]. Providing new information on pathways

that drive later life disease, our data indicate that decreased expression levels of genes related

to an inflammatory intrauterine environment are associated with adverse neurocognitive

development in children who are born prematurely.

A possible limitation of our study is our small sample size due to missing cognitive data for

21 subjects with available gene expression data. The percentage of subjects in our subset of

ELGAN infants that were lost to follow-up (21/43 = 48.8%) was much higher than that of the

larger ELGAN cohort (8%) [25]. However, previous studies suggest that loss-to-follow-up per-

centages below 60% typically are not associated with substantial bias [46]. In order to compen-

sate for our sample size, we employed exact logistic regression models, as recommended in

cases when data are sparse [47]. Despite the modest sample size, we were able to detect associa-

tions between umbilical cord genomic markers and neurocognitive function ten years after

birth.

In summary, we identified genes whose expression levels are associated with both intrauter-

ine inflammation and later-life neurocognitive impairment. Identification of genes that are

associated with adverse neurodevelopment could allow for improved surveillance for neuro-

cognitive deficits and earlier intervention for children who are at risk, which has been shown

to be an effective treatment method for children with intellectual disabilities [48]. Future

research studies could aim to identify the underlying mechanisms for the altered gene expres-

sion patterns in order to mitigate the risk for cognitive impairment in extremely low gesta-

tional age newborns exposed to intrauterine inflammation.
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